Mathematics in Lean
  • 1. 引言
  • 2. 基础知识
  • 3. 逻辑
  • 4. 集合和函数
  • 5. 初等数论
  • 6. Structures
  • 7. Hierarchies
  • 8. Groups and Rings
  • 9. Linear algebra
  • 10. Topology
  • 11. Differential Calculus
  • 12. Integration and Measure Theory
  • Index
Mathematics in Lean
  • Mathematics in Lean
  • View page source

Mathematics in Lean

  • 1. 引言
    • 1.1. 入门指南
    • 1.2. 概述
  • 2. 基础知识
    • 2.1. 计算
    • 2.2. 证明代数结构中的恒等式
    • 2.3. 使用定理和引理
    • 2.4. 更多使用 apply 和 rw 的示例
    • 2.5. 证明关于代数结构的事实
  • 3. 逻辑
    • 3.1. 蕴含和全称量词
    • 3.2. 存在量词
    • 3.3. 否定
    • 3.4. 合取和等价
    • 3.5. 析取
    • 3.6. 序列和收敛
  • 4. 集合和函数
    • 4.1. 集合
    • 4.2. 函数
    • 4.3. 施罗德-伯恩斯坦定理
  • 5. 初等数论
    • 5.1. 无理根
    • 5.2. 归纳和递归
    • 5.3. 素数无穷
  • 6. Structures
    • 6.1. Defining structures
    • 6.2. Algebraic Structures
    • 6.3. Building the Gaussian Integers
  • 7. Hierarchies
    • 7.1. Basics
    • 7.2. Morphisms
    • 7.3. Sub-objects
  • 8. Groups and Rings
    • 8.1. Monoids and Groups
    • 8.2. Rings
  • 9. Linear algebra
    • 9.1. Vector spaces and linear maps
    • 9.2. Subspaces and quotients
    • 9.3. Endomorphisms
    • 9.4. Matrices, bases and dimension
  • 10. Topology
    • 10.1. Filters
    • 10.2. Metric spaces
    • 10.3. Topological spaces
  • 11. Differential Calculus
    • 11.1. Elementary Differential Calculus
    • 11.2. Differential Calculus in Normed Spaces
  • 12. Integration and Measure Theory
    • 12.1. Elementary Integration
    • 12.2. Measure Theory
    • 12.3. Integration
Next

© Copyright 2020, Jeremy Avigad, Patrick Massot.

Built with Sphinx using a theme provided by Read the Docs.